Tuesday, October 22, 2019

Sound Waves Essays - Waves, Acoustics, Wave Mechanics, Hearing

Sound Waves Essays - Waves, Acoustics, Wave Mechanics, Hearing Sound Waves Sound is part of our everyday lives. Just like we have eyes for, we are given ears for hearing sound. We rarely take the time to think about the characteristics of sound and the ways that they are made. The basis for an understanding of sound and hearing is the physics of waves. Sound is a wave, which is created by vibrating objects and spread through a medium from one location to another. In this paper, we will look at the nature, properties and behaviors of sound waves. A wave can be described as a disturbance that travels through a medium, transporting energy from one location to another location. The medium is simply the material through which the sound, or disturbance, is moving; it can be thought of as a series of interacting particles. The example of a slinky wave is often used to illustrate the nature of a wave. A disturbance is typically created within the slinky by the back and forth movement of the first coil of the slinky. The first coil becomes disturbed and begins to push or pull on the second coil; this push or pull on the second coil will shift the second coil from its balanced position. As the second coil becomes shifted, it begins to push or pull on the third coil; the push or pull on the third coil displaces it from its balanced position. As the third coil becomes shifted, it begins to push or pull on the fourth coil. This process continues one after the other, each individual particle acting to displace the neighboring particle; ev entually the disturbance travels all the way through the slinky. As the disturbance moves from coil to coil, the energy which was originally introduced into the first coil is transported along the medium from one location to another. A sound wave is similar to a slinky for a couple of reasons. First, there is a medium, which carries the disturbance from one location to another. Usually, this medium is air; though it could be any material such as water or steel. The medium is simply a series of interconnected and interacting particles. Second, there is an original source of the wave, some vibrating object capable of disturbing the first particle of the medium. The vibrating object, which creates the disturbance, could be the vocal chords of a person, the vibrating string and sound board of a guitar or violin, the vibrating tines of a tuning fork, or the vibrating diaphragm of a radio speaker. Third, the sound wave is transported from one location to another by means of the particle interaction. If the sound wave is moving through air, then as one air particle is shifted from its balanced position, it exerts a push or pull on its nearest neighbors, causing them to be shifted from their equilibrium position. This pa rticle interaction continues throughout the entire medium, with each particle interacting and causing a disturbance of its nearest neighbors. Since a sound wave is a disturbance, which is transported through a medium via the means of particle interaction, a sound wave is characterized as a mechanical wave. The creation of sound waves are often demonstrated by using a tuning fork. A tuning fork is a metal object that has two tines(spikes) that vibrate if they are hit by a rubber hammer or mallet. As the tines of the tuning forks vibrate back and forth, they begin to disturb surrounding air molecules. These disturbances are passed on to neighboring air molecules by the means of particle interaction. The motion of the disturbance, originating at the tines of the tuning fork and traveling through the medium (in this case, air) is what is referred to as a sound wave. Sometimes, the tuning fork is mounted on a soundboard. When this happens, the vibrating tuning fork, connected to the soundboard, sets the soundboard into a vibrating motion. In turn, the soundboard sets the air inside of the it into a vibrating motion. As the tines of the tuning fork, the structure of the soundboard, and the inside of the soundboard begin vibrating at the same frequency, a louder sound is produced. In fact, the more particles which can be made to

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.